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A three-dimensional contact algorithm for sliding surfaces
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SUMMARY

This paper describes a model for sliding contact between materials. This has been embodied in a
contact algorithm which has been incorporated into a three-dimensional, time-dependent, staggered mesh,
�nite element Lagrangian code. We �rst present an overview of the code and then describe the model
underpinning the contact algorithm. The stages of the algorithm are then described and �nally, results
are presented for a number of di�erent problems. Copyright ? 2003 John Wiley & Sons, Ltd.

1. INTRODUCTION

The physical interaction of adjacent materials at an interface is an important aspect of dynam-
ical phenomena. For materials which move over each other shearing can occur if the relative
motion is non-zero. The e�ect of shear is to deform the materials producing strain and internal
stresses. The coupling between the stress and strain is dependent on the material properties.
For a �uid the stress is proportional to the strain rate while for a perfectly elastic solid (say
a metal) the stress is proportional to the strain (Hooke’s law). For �uids, the stress can only
be supported over a very small localized region, such as within a boundary layer [1]. Within
the layer energy is dissipated through the action of viscosity. Solids can support stresses, over
a larger region, because of their inherent physical strength. However, the strength of most
metals is strain rate dependent. In many cases highly strain rate dependent. Solids that slide
over each other will experience a frictional force tending to dissipate the kinetic and elastic
distortional energy. The frictional coupling will also produce di�erent levels of stress within
each material and the magnitudes will be dependent on their respective strengths. As the level
of the strain rate can e�ect the strength of a material the dynamics of sliding contact can
be extremely complex. For small or moderate stresses, energy will be stored as recoverable
elastic distortional energy; if the materials are allowed to slide back to their original positions
this energy will be recovered. For increased stress levels one or both of the solids may reach
their elastic limit, and yield, causing some of the energy to be dissipated as plastic work [2].
For extremely high stress levels many solid materials will behave like a �uid, and the �uid
approximation is su�cient to describe their physical behaviour.

∗Correspondence to: A. S. Dawes, Computational Physics Group, Department of Physics Design, AWE plc,
Aldermaston RG74PR, Berkshire, U.K.

†E-mail: alan.dawes@awe.co.uk

Received 19 October 2002
Copyright ? 2003 John Wiley & Sons, Ltd. Revised 20 March 2003



1190 A. S. DAWES

Within the computational physics group at AWE, dynamical problems are modelled using
codes developed upon either the Lagrangian or Eulerian numerical methods. Both have their
advantages and disadvantages. For the Lagrangian approach the mesh follows the �ow �eld
with material interfaces captured as part of the mesh. However, for highly distorted �ows
the mesh will tangle causing the numerical method to breakdown. For the Eulerian approach
this does not happen because the mesh remains �xed. However, the method tends to di�use
results and smear material interfaces unless they are captured. For this we use the volume of
�uid (VOF) technique based on Youngs [3]. A comprehensive review of this technique can
be found in the paper by Rider and Kothe [4].
One way to overcome the Lagrangian mesh distortion is to remap the solution over to a reg-

ular mesh just before the distortion becomes too great. The calculation is then continued using
an Eulerian code. However, this requires some form of human intervention, to monitor the
degree of mesh distortion, and judge the appropriate point to remap. This has been the tradi-
tional approach but recently CORVUS [5; 6] has been developed in two-dimensions (2D) and
PEGASUS [7; 8] in three-dimensions (3D) which both embrace the Arbitrary Lagrangian Eule-
rian (ALE) philosophy. This technique exploits the advantages of the Lagrangian and Eule-
rian methods while maintaining a smooth mesh topology using a dynamic mesh re-positioning
strategy. A general review of this approach can be found in the paper by Benson [9].
The initial dynamics of the material interfaces (as they start to move) are important, and the

pure Lagrangian approach is the natural choice to model this behaviour. Generally, adjacent
materials in a Lagrangian mesh share a common numerical interface. However, as the �ow
�eld develops un-natural shearing can develop because of the rigidity of the mesh coupled
with the di�erences in adjacent material properties. For materials which are known to slide
over each other numerical shear is physically inaccurate. In this paper we describe a model for
sliding contact that overcomes this limitation. In this paper we do not consider the tangential
interaction, such as at a boundary layer or frictional interaction.
The implementation of the contact algorithm into the three-dimension code PEGASUS was

brie�y outlined earlier by the author [10] and was developed from the master and slave
approach adopted in CORVUS [6]. The slide algorithm in CORVUS has some similarities to
that used in the TENSOR code [11] but it does not use the notion of phony elements. The
slide model described in this paper has similarities to the method developed by Wilkins [12].
However, it defers in a number of respects. First, it has been developed around the �nite
element approach used in PEGASUS. Second, it introduces the idea of an e�ective pressure
force. Third, our model has been developed for purposes of modularity because PEGASUS has
followed a modular development.
In this article we �rst present an overview of the code and then describe the model un-

derpinning the contact algorithm. The stages of the algorithm are then described and �nally,
results are presented for a number of di�erent problems.

2. HYDROCODE OVERVIEW

The governing equations to be solved in a Lagrangian frame are respectively conservation of
mass, momentum and energy thus,

d�
dt
+ �∇ · u=0 (2.1)
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Figure 1. Hexahedral element de�nition.

�
du
dt
=∇ ·� (2.2)

�
d�
dt
=−(� · ∇) · u (2.3)

where � is the density, u is the velocity vector, � is the speci�c internal energy and � is
the stress tensor. As described above, for extremely high stress levels many solid materials
behave approximately like a �uid. However, at lower stress levels, a solids ability to resist
distortion becomes an important factor, and the material response cannot be characterised by
an hydrodynamic equation of state (EoS) alone. It therefore becomes necessary to include
the mechanical behaviour of the solid material in the modelling. To do this the stress tensor
has been de�ned as the sum of the hydrostatic pressure p and the deviatoric stress tensor
s= − pi + s, where i is the unit tensor. For closure an EOS for the pressure p in terms
of the other thermodynamic variables (usually � and �) must also be supplied, as well as
di�erential equations for the incremental changes in the deviatoric stress components and
additional incremental energy changes due to elastic distortion and plastic work. The form of
the elastic–plastic model employed is similar to the approach developed by Wilkins [2].
The numerical approach was based on a staggered mesh using a 3D Cartesian computa-

tional grid with co-ordinates (x; y; z). Each element is hexahedral with eight vertices and the
ordering of these nodes within each element are illustrated in Figure 1. The three velocity
components (u; v; w) of the vector u are stored at the vertices while pressure, density, spe-
ci�c internal energy and (if present) deviatoric stresses are stored at the element centres. The
mesh is divided into a number of blocks which are arranged to have structured rectangular
connectivity between elements within a block but between blocks the connectivity is unstruc-
tured. The momentum, energy and (if present) deviatoric stress equations are solved using a
Petrov–Galerkin weak integral �nite element formulation (employing mass lumping) using an
iso-parametric co-ordinate frame �=[�; �; �]T. In the new frame the element becomes a unit
cube. The original Cartesian co-ordinate vector x is related to the iso-parametric co-ordinates
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Table I. Iso-parametric nodal values.

k �k �k �k

1 −1=2 −1=2 −1=2
2 1=2 −1=2 −1=2
3 1=2 1=2 −1=2
4 −1=2 1=2 −1=2
5 −1=2 −1=2 1=2
6 1=2 −1=2 1=2
7 1=2 1=2 1=2
8 −1=2 1=2 1=2

through the relationship,

x=
8∑

k=1
Nk(�)xk (2.4)

where �∈ [− 1
2 ;
1
2 ], �∈ [− 1

2 ;
1
2 ], �∈ [− 1

2 ;
1
2 ] and Nk(�) is the basis function for the kth node in

the element de�ned as

Nk(�)= 1
8(1 + 4�k�)(1 + 4�k�)(1 + 4�k�) (2.5)

where the vertice values (�k ; �k ; �k) are de�ned in Table I. The velocity vector within an
element is then just the variation of the velocities between the nodes thus,

u=
8∑

k=1
Nk(�)uk (2.6)

because the iso-parametric co-ordinates are time in-dependent.
The numerical solution method was based upon a predictor=corrector strategy and using an

arti�cial viscosity term (added to the pressure) to maintain numerical stability about shock
waves. To advance the solution at the ith node, jth element and at the nth time level to the
next time level n+ 1 there are �ve stages.

1. The half time step node positions are calculated xn+1=2i = xni +u
n
i�t=2, where the subscript

refers to the node number and superscript refers to the time step level. At this stage no
nodes are moved.

2. The �nite element equations are solved during the Predictor stage at the half time
step for density �, pressure p, speci�c internal energy �, and (if present) deviatoric
components for each element j and the accelerations at each node u̇i.

3. The full time step velocities are calculated based on the nodal accelerations un+1i = uni +
u̇i�t.

4. The nodes are moved to their new full time step positions xn+1i = xni +
1
2(u

n
i + u

n+1
i )�t.

5. The �nite element equations are solved during the Corrector stage at the full time step
for density �, pressure p, speci�c internal energy �, and (if present) deviatoric stress
components and associated energy changes for each element j.

This cycle is repeated until the desired temporal position is reached.
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Figure 2. Split mesh de�nition.

3. MODEL FOR SURFACE INTERACTION

Consider for the moment a single mesh containing two di�erent adjacent materials with the
interface between them sharing the same set of nodes. The two materials will in general have
di�erent physical properties and as they distort, say through some sideways impulse, they
will tend to slide or shear. However, slide will be impossible because they share a common
set of nodes. This coupling will cause unnatural shearing. To overcome this the mesh can
be split up into two separate regions, illustrated in Figure 2, each with its own set of nodes
on the surface. The slide algorithm then de�nes the forces at each node and on each surface
based on the interaction between them. We now go onto develop the model for the surface
interaction.

3.1. Sliding interfaces

The Rankine Hugoniot relations (see for example, the book by Hirsch [13]) can be used to
show that at an interface the normal stress �n and normal velocity un components must be
continuous,

[�n]= 0; [un]= 0 (3.1)

while the tangential velocity ut is generally discontinuous,

[ut] �=0 (3.2)

From these conditions any physical model for sliding contact must guarantee that Equation
(3.1) is satis�ed.

4. CONTACT ALGORITHM

For our purposes all materials have clearly de�ned boundaries and at some internal boundaries
materials are allowed to slide over each other; it is assumed that there is no friction between
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them. Each sliding surface must be chosen to be either a master or slave. The master surface
is chosen to be either the one which is the strongest or the most dense, or failing that, the
one driving the �ow. In this way, it is the slave surface which conforms most to the master.
The method was based on a predictor=corrector philosophy. During the Predictor stage nodal

accelerations on the slide surfaces are calculated (see step 2 of the Lagrangian phase above)
based on the assumption that they are free boundaries. The Corrector stage symmetrically
modi�es the normal accelerations, on both surfaces in contact, to account for the surface
interaction. The new normal accelerations are vectorially added to the corresponding nodal
unmodi�ed tangential accelerations to give the new nodal accelerations. Nodes are then moved
but numerical inaccuracies can cause the surfaces to penetrate. Therefore, the slave surface is
asymmetrically put-back-on to the master surface and the slave normal velocity is forced to
match the master; for normal velocity continuity.
To determine the normal forces of interaction, each surface must have knowledge of its

opposite surface it is in contact with. For our purposes we shall use the terms upper and lower
surface to represent respectively the surface where the forces are currently being computed
and the surface which it is in contact. Generally nodal positions are not coincident. Therefore,
the lower surface is where forces have to be interpolated to the point the upper point acts.
With the above modi�cations the original scheme now becomes:

1. The half time step node positions are calculated xn+1=2i = xni +u
n
i�t=2, where the subscript

refers to the node number and superscript refers to the time step level. At this stage no
nodes are moved.

2. The �nite element equations are solved during the Predictor stage at the half time
step for density �, pressure p, speci�c internal energy �, and (if present) deviatoric
components for each element j and the accelerations at each node u̇i. At a sliding
surface it is assumed to have free boundary conditions.
• The Contact Algorithm symmetrically updates the master and slave surface nodal
accelerations due to the forces of interaction.

3. The full time step velocities are calculated thus un+1i = uni + u̇i�t.
4. The nodes are moved to their new full time step positions xn+1i = xni +

1
2(u

n
i + u

n+1
i )�t.

• If penetration occurs the asymmetric put-back-on stage moves the slave nodal po-
sitions onto the adjacent master surface and adjusts the normal velocities to satisfy
normal velocity continuity.

5. The �nite element equations are solved during the Corrector stage at the full time step
for density �, pressure p, speci�c internal energy �, and (if present) deviatoric stress
components and associated energy changes for each element j.

It is clear that there are two additional stages which only apply to the nodes on the sliding
surfaces. We now go onto fully describe the stages of the contact algorithm.

4.1. Search procedure

Each surface is represented by a set of nodes and connectivity to their associated elements.
The initial search will determine the connectivity between nodes on the upper surface to those
on the lower surface. The search will be symmetric and will be the most computationally
expensive because the connectivity has to be created. To determine this connectivity it is
only necessary to determine the lower node which is closest to a given upper node because
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Figure 3. Normal and element face intersection.

the surfaces are assumed to be smooth and touching; we do not consider void opening or
closure.
Once the lower node has been found the attached element faces are searched to determine

the element face the projected normal vector penetrates, illustrated in Figure 3. To do this the
surface intersection point must be determined based on the unit normal vector (see Section
4.1.1) and the distance � to it from the upper node, with position vector xu, and the point
(�; �) through which the unit normal vector n̂ passes. The position vector of the intersection
point is given by

x= xu + �n̂ (4.1)

and by using the variation of the position vector in terms of the �nite element basis functions
the iso-parametric equation of the intersection point can be shown (see Appendix A) to have
the form

xu + �n̂= a0 + a1�+ a2�+ a3�� (4.2)

where a0, a1, a2 and a3 are vectors which are linear functions of the position vectors for the
four nodes de�ning an element face. This is a vector equation for the three unknowns (�; �; �)
and can be solved using vector identities. The desired intersection point passes through the
face satisfying the criteria �∈ [− 1

2 ;
1
2 ] and �∈ [− 1

2 ;
1
2 ]. If the point found falls outside the

region then the other element faces are searched until the desired element is found.
As part of the acceleration update stage(see Section 4.2) the connectivity information be-

tween the sliding surfaces must be kept up to date by checking it, at every time level, to
determine whether it has changed. To do this, for a given upper node the intersection point
on the lower surface is re-calculated and if it still lies within the lower element face, stored
earlier, then it is not necessary to change the connectivity for that node. However, if this
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Figure 4. Eight possible search directions.

Table II. Movement criteria.

No. �¿1=2

1 �¡− 1=2 South East
2 �∈ [−1=2; 1=2] East
3 �¿1=2 North East

�¡1=2

4 �¡− 1=2 South West
5 �∈ [−1=2; 1=2] West
6 �¿1=2 North West

�∈ [−1=2; 1=2]

7 �¡− 1=2 South
8 �¿1=2 North

is false the connectivity must be updated dynamically by searching outward from the stored
element face. The search moves one element at a time with upto eight possible directions
illustrated in Figure 4. The direction of motion is controlled by the calculated intersection
point (�∗; �∗) on the lower element face and the criteria given in Table II. By moving to the
adjacent element the direction of movement is recalculated and the search continues until the
correct element face has been found.
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4.1.1. Normal vector evaluation. Normal vectors are calculated at each node on the master
and slave surfaces at the half time step positions. At each node there will be several elements
attached to it. In general for hexahedral elements the normal vector calculated at the node
in question will be di�erent for the di�erent elements attached to it. One has to calculate an
average value n̂ and, for our purposes, was based on an area weight of the normal vectors
from each of the attached elements calculated at the nodal position thus,

An̂=
N∑

k=1
Akn̂k (4.3)

where N is the number of elements attached to the node, Ak and n̂k are respectively the area
and the unit normal vector associated with the kth element and A is the total area thus,

A=
∣
∣
∣
∣
N∑

k=1
Akn̂k

∣
∣
∣
∣ (4.4)

Furthermore, if the node lies on a boundary the normal vector is adjusted to satisfy the
boundary condition.

4.2. Symmetric force update

The accelerations of all nodes on the sliding surfaces are initially calculated based on the
internal body forces and free surface boundary condition. For a given node on the upper and
lower surfaces momentum conservation requires that,

Muu̇u =Fu ; Mlu̇l =F l (4.5)

where u̇u and u̇l are the surface accelerations based on a free boundary assumption, Mu is the
mass associated with the upper node, Ml is the mass associated with the lower node, Fu is the
upper nodal force vector and F l is the lower nodal force vector. In all cases Ml, Mu, F l and
Fu are extracted as part of the �nite element solution. The total force due to the interaction
between the materials is given by

Mu̇=F (4.6)

where M and F are respectively the total mass and vectorial force associated with the node.
By Newton’s Third Law the force can be split up into upper and lower components thus,

Muu̇=Fu + ru ; Mlu̇=F l + rl (4.7)

where F =Fu + F l, ru + rl = 0 and where ru and rl are reaction forces due to the surface
interaction. The sum of the reaction forces is an equivalent statement to the continuity of the
normal stress components Equation (3.1) over a given area thus

ru + rl = [�n]n̂��=0 (4.8)

where �� is an elemental area at the slide interface. Since there are no frictional forces
between the surfaces there is no coupling between the tangential acceleration components.
The only surface interaction force is normal to it and the normal acceleration component
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must be modi�ed to re�ect this. Therefore, if Au is the area over which the upper nodal force
acts and Al is the area over which the lower nodal force acts then for normal stress continuity,

(Muu̇− Fu) · n̂
Au

+
(Mlu̇− F l) · n̂

Al
= 0 (4.9)

From this equation the modi�ed nodal normal acceleration component on the surface can be
shown to be equal to

u̇ · n̂= u̇n= puAu + plAu
Mu +M lAu

(4.10)

where we have de�ned M l =Ml=Al and the e�ective normal pressure forces to be,

pu =
Fu · n̂
Au

; pl =
F l · n̂
Al

(4.11)

One will notice that when there is no strength (�uid dynamic problem) the e�ective pressure
forces are just the hydrodynamic pressures as expected.

4.3. Asymmetric put-back-on method

With the updated accelerations the nodes are moved, but some nodes may penetrate due
to numerical inaccuracies. For a node that does penetrate the distance between the slave
to master surfaces is calculated and the slave node is moved onto the master surface. For
velocity conservation the normal component of the slave node velocity is forced to equal the
interpolated master velocity resolved in the slave normal direction.

4.4. Programming philosophy

Like PEGASUS the contact algorithm was written in FORTRAN 90 [14]. It was designed to
be modular so that there was a clear interface between PEGASUS and the contact algorithm.
The �rst stage of the slide algorithm was an initialization step. Surface data was gathered
from PEGASUS and this was used to create the internal slide data structure which keeps a
record of the nodes, both in terms of global and local information, on the slide surfaces
and stores the slide node and element surface connectivity. With this done it was never
repeated. After each Lagrangian Predictor step the slide algorithm gathers the required slide
nodal information from PEGASUS and stores this in the slide internal data structure. The slide
algorithm computes all velocities, accelerations and position vectors for the slide surface nodes.
Before each Lagrangian Corrector step the slide surface nodal information is scattered back
to the PEGASUS data structures.

5. RESULTS AND DISCUSSION

5.1. Sod shock tube problem

Sod’s shock tube problem [15] was used to test the planar symmetry of the contact algo-
rithm. The problem, illustrated in Figure 5, consists of two ideal �uid regions separated by
a diaphragm. With one region at a higher pressure with respect to the other. The diaphragm
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Figure 5. Sod’s shock tube.

Figure 6. Wave structure. (S) shock wave, (R) rarefaction wave and (C) contact.

is broken producing a shock wave that propagates outward from left to right and a rarefac-
tion wave from right to left. The two waves are separated by a contact discontinuity, which
propagates at a constant velocity, and represents the moving interface between the two �uids.
The arrangement is illustrated in Figure 6.
Numerically the problem can be setup as a single mesh, with a common set of nodes on

the interface, or as two separate meshes with the inclusion of the contact algorithm. In both
cases the behaviour of the interface should be the same. This was studied by placing a probe
on the interface at the start of the calculation and its position and velocity measured with
respect to time; the master surface was assumed to be the high pressure region. The results
are illustrated in Figures 7 and 8. One can see that the agreement between the positions is
excellent. However, the results for the velocity oscillate early on during the transient, or start
up phase, but settle down to the same approximate value later on.

5.2. Driven spherical shell

A driven spherical shell was used to test the spherical symmetry of the contact algorithm.
The driving force was radial with no shear between the materials. The con�guration consisted
of an outer 10 cm thick lead (Pb) shell in contact with an inner 3 mm thick copper (Cu)
shell with an inner radii of 9:7 cm. The initial con�guration is illustrated in Figure 9. At time
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Figure 7. Spatial variation at interface.

Figure 8. Velocity variation of interface.

Figure 9. Driven spherical shells.
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Plate 1. Density contours at t=30 �s from PEGASUS. (Top) single mesh, (Bottom) split mesh.

Plate 2. Density contours at t=35 �s from PEGASUS. (Top) single mesh, (Bottom) split mesh.
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Plate 3. Arrangement of rotating discs at 0 �s. Middle disc has been colour coded for
clarity. Red (Top) and blue (bottom).

Plate 4. Low strength results after one rotation at 50 �s.

Plate 5. High strength results after one rotation at 50 �s.
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zero the outer shell is given an inward radial velocity of −1:0 mm=�s. The Pb shell then
compresses the Cu shell until it has collapsed.
Numerically the problem can be setup as a single mesh, with a common set of nodes on

the interface, or as two separate meshes with the inclusion of the contact algorithm. In both
cases the behaviour of the collapsing radial interface will be the same.
Two calculates were performed with (Pb being the master and Cu the slave) and without

the contact algorithm. Equivalent axi-symmetric calculations were also performed in CORVUS.
Density contours are illustrated for t=30 �s in Plate 1 and at t=35 �s in Plate 2. Visually
there are appears to be no di�erences. To gain a greater understanding of the e�ect of splitting
the interface, probes were placed in the calculation at radii 9, 8, 7, 6, 5, 4.5, 4, 3.5, 3, 2.5
and 2 cm. In addition, the polar angle (�) between the probes was varied in steps of 5◦

from 90◦ at the equator to the pole at 180◦ and the azimuthal angle (	) was varied from
0 to 90◦ in 5◦ steps. In order to compare the time the probe gets crossed by the inner Cu
interface with CORVUS a single time was required for each radial level and polar angle. This
was obtained by averaging the arrival times over the 19 azimuthal angles. Timings from
the probes were compared for the two di�erent PEGASUS calculations. It was found that the
maximum absolute timing di�erence was t=0:0023 �s. Equivalent CORVUS calculations using
an axi-symmetric mesh were performed and the maximum absolute timing di�erence was
found to be t=0:0008 �s. Both timing di�erences are very small but the CORVUS calculation
appears to be more accurate than the PEGASUS calculation because of the symmetry inherent
in the axi-symmetric mesh.

5.3. Rotating disc

The rotation of a hollow disc between materials was used to test slide in the contact algorithm.
The problem consisted of three concentric discs with respective outer radii 0.5, 1.0 and 1:5cm.
Both the inner disc and outer ring were �xed while the middle ring was allowed to rotate
clockwise with angular velocity ! (=0:13 rad=�s). The full arrangement is illustrated in
Figure 10 where the labels M and S represent the position of the master and slave surfaces.
The PEGASUS mesh was setup using 120 angular zones in the inner disc and outer ring. In the
middle ring 240 angular zones where used. Due to the use of hexahedral cells non-uniform
zoning had to be used around the origin within the inner disc. For illustration purposes the
middle ring was coloured coded to highlight the top and bottom of the disc at the start and
after one rotation, and is illustrated in Plate 3.
Unlike the other problems, which were hydrodynamic in nature, strength was used to limit

the radial expansion of the middle disc; without it the disc would �y apart. The e�ect of
this is demonstrated in Figures 11 and 12 where the magnitude of material strength directly
e�ects the increase in the volume of the inner and middle discs. The change in volume of
the inner disc is a direct consequence of the put-back-on step because the outer surface of
the inner disc must conform to the inner surface of the middle disc; which has a tendency
to �y outward. Similarly for the outer surface of the middle disc which tends to �y outward.
Therefore, the degree of expansion of the inner and middle discs is directly dependent on the
magnitude of material strength.
The e�ect of the di�erent strength levels are illustrated in Plates 4 and 5. After one rev-

olution (at 50 �s), and without friction, the middle disc would have moved by 6.5 radians.
However, for low strength the discs have a tendency to expand causing them to slow down,
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Figure 10. Rotating disc. Shaded regions are stationary.
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Figure 11. E�ect of strength on the rigidity of inner disc radii. Lower curve,
high strength; upper curve, low strength.

which is illustrated in Plate 4. However, by signi�cantly increasing the strength contribution
the discs become less able to expand and less likely to slow down, which is illustrated in
Plate 5. This latter result being very close to the analytic value.
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Figure 12. E�ect of strength on the rigidity of middle disc outer radii. Lower curve,
high strength; upper curve, low strength.

6. CONCLUSIONS

In this paper the development of an algorithm for sliding contact between materials was
presented. The algorithm was described in the context of the Lagrangian, explicit, staggered
mesh, �nite-element, predictor–corrector code PEGASUS and results for a number of di�erent
problems presented. From them it is observed that the algorithm is accurate and robust.
The modularity of the algorithm makes it suitable for it to be incorporated into any explicit
Lagrangian code based on the predictor–corrector philosophy independent of the choice of
numerical method. The only requirement being that hydrodynamic values can be de�ned
(such as an e�ective pressure force and velocities) on the surfaces in contact with each other.

APPENDIX A: PROPERTIES OF ISO-PARAMETRIC SURFACE

For convenience we consider the element face de�ned by �k = 1
2 and �=

1
2 illustrated in

Figure A1.
Whence,

Nk(�; �)= 1
4(1 + 4�k�)(1 + 4�k�) (A1)

The position vector in terms of the iso-parametric co-ordinate frame is given by

x= a0 + a1�+ a2�+ a3�� (A2a)

where
a0 =

1
4(x1 + x2 + x3 + x4); a1 =

1
2(−x1 + x2 + x3 − x4)

a2 =
1
2(−x1 − x2 + x3 + x4); a3 = x1 − x2 + x3 − x4

(A2b)
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Figure A1. Element face in iso-parametric space.
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Figure A2. Characteristic vectors.

Geometrically a0 represents an average position vector, a3 is a measure of the face skewness
and the vectors a1 and a2 are represented schematically in Figure A2. The normal vector at
any point on the surface is given by

n(�; �)=
@x
@�

∧ @x
@�
=(a1 ∧ a2) + (a3 ∧ a2)�+ (a1 ∧ a3)� (A3)
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APPENDIX B: DETERMINATION OF ISO-PARAMETRIC CO-ORDINATES

It is trivial to calculate the position vector x from Equation (A2a) when the iso-parametric
co-ordinates (�; �) are known. However, to determine the surface intersection point we must
be able to solve the inverse problem i.e. given the position vector what are the iso-parametric
co-ordinates and this is far from trivial. As discussed in the main text the position vector x
is represented by,

x= xo + �n (B1)

where xo is the upper position vector and � is the distance to the surface.
To determine the co-ordinates there are di�erent cases to consider. We �rst de�ne the

normal vector m to be,

m= a1 ∧ a2 (B2)

and any point on the plane will satisfy the equation m · x= h where h is a constant for the
plane. By de�ning the parameter � by

�= a3 ·m (B3)

it is trivial to prove that all four points (xk) lie on the plane when �=0. We now go on to
investigate solutions to Equation (A2a) for non-planar and planar surfaces.

B.1. Planar case

For �=0 all four points lie on a plane. Therefore,

(xo − a0 + �n) · (a1 ∧ a2)=0 (B4)

which yields a single value for � thus,

�=
(a0 − xo) · (a1 ∧ a2)

n · (a1 ∧ a2)
(B5)

This equation becomes invalid when n is perpendicular to the vector a1 ∧ a2 i.e. when n is
parallel to the surface and does not intersect it.

B.1.1. Linear situation. When |a3|=0, Equation (A2a) reduces to the simpler form
xo − a0 + �n= a1�+ a2� (B6)

By taking the dot product with respect to either a1 or a2 yields two simultaneous equations
which can be solved simultaneously for the (�; �).

B.1.2. Non-linear situation. When |a3| �=0 all vectors are co-planar and any vector in the
plane can be written as a linear combination of a1 and a2 thus,

a3 =Aa1 + Ba2 (B7)

and because x and a0 are in the plane,

xo − a0 + �n=Ca1 +Da2 (B8)
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The coe�cients are derived in the same way as in Section B.1.1. Equation (A2a) reduces to

Ca1 +Da2 = a1�(1 + A�) + a2�(1 + B�) (B9)

Equating coe�cients yields,

C = �(1 + A�)

D = �(1 + B�)
(B10)

Upon elimination of � yields the quadratic equation,

B�2 + (1 + 
)�− C=0 (B11)

where 
=AD − BC. The roots of the equation are given by

�±= − 1 + 

2B

± 1
2B

√
(1 + 
)2 + 4BC (B12)

For (1 + 
)2 + 4BC¿0 there are two roots (i.e. two sets of iso-parametric co-ordinates) for
one value of �. The surface in (�; �) space must fold back onto itself at the cusp. The choice
of root must be selected carefully because both give the same positional vector! However, a
planar surface based on positional vectors will not in general produce an equivalent planar
surface based on the velocity vectors and because of this the di�erent roots will give di�erent
velocities! Provided the cusp does not pass through the cell face then the root is chosen in
the following way. For a point xo lying on the surface at ao then (�; �) will be (0; 0) and
�=0. To guarantee this the sign of the root in Equation (B12) must be selected such that,

1+

2B ¿0; �= �+
1+

2B ¡0; �= �−

(B13)

The cusp locus can be found by considering the curve along which (1 + 
)2 + 4BC=0 is
true. Thus,

�= − 1 + 

2B

; �=

− 1
2A

(B14)

Therefore, the locus of points where (�; �) are single valued is given by the linear equation,

B�+ A�+ 1=0 (B15)

The boundaries where the cusp just skims the edges of the iso-parametric face are illustrated
in Figure B1. From this the cusp can be shown to pass through the face region if it lies in
the shaded region depicted in Figure B2. When the cusp does pass through the square the
element face can become non-convex, i.e. boomerang, and is illustrated in Figure B3.

B.2. Non-planar case

For � �=0 the vectors are non-co-planar. Let,

xo − a0 = �a1 + �a2 + a3 (B16)

n=pa1 + qa2 + ra3 (B17)
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Figure B3. Element face that has boomeranged.

Hence

�=

xo · (a2 ∧ a3)

�
; �=


xo · (a3 ∧ a1)
�

; =

xo · (a1 ∧ a2)

�
(B18)

where 
xo= xo − ao and

p=
n · (a2 ∧ a3)

�
; q=

n · (a3 ∧ a1)
�

; r=
n · (a1 ∧ a2)

�
(B19)

Equating terms yields,

A(�; �)a1 + B(�; �)a2 + C(�; �; �)a3 = 0 (B20)

where

A(�; �) = �+ �p− �
B(�; �) = �+ �q− �

C(�; �; �) = + �r − ��
(B21)

Now because the vectors in Equation (B20) are not linearly dependent it can only be satis�ed
when A=0, B=0 and C=0. Whence

+ �r=(�+ �p)(�+ �q) (B22)

Which upon expansion yields a quadratic equation for the distance to the surface � thus,

pq�2 + (p�+ �q− r)�+ �� − =0 (B23)

Hence for pq �=0 it has the roots given by,

�±=
(r − p� − �q)±

√
(p�+ �q− r)2 + 4pq(− ��)
2pq

(B24)

Provided (p�+ �q− r)2 + 4pq(− ��)¿0 the vector n̂ will intersect the surface either once
or twice. When it intersects twice the surface must curve back on itself with co-ordinates
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(�±; �±) given by,

�± = �+ p�±

�± = �+ q�±
(B25)

The sign of the root must be chosen to satisfy the condition when the point xo lies on the
surface at ao then (�=0; �=0) and �=0; this latter result is equivalent to setting = ��. To
guarantee this the sign of the root in Equation (B24) must be selected such that

r − p� − �q¿0; �= �−

r − p� − �q¡0; �= �+
(B26)

The locus of points where (�; �; �) are single valued and along which the surface curves back,
in physical space, can be found by considering the curve along which (p�+ �q− r)2 + 4pq
(− ��)=0 is true. Hence,

�0 = (r − p� − �q)=(2pq)
�0 = �+ p�0

�0 = �+ q�0

(B27)

Elimination of �0 yields a linear equation (i.e. straight line) for the cusp thus,

q�0 − p�0 + (p� − q�)=0 (B28)

The analysis of this equation follows the same procedure as the planar situation discussed
earlier.
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